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4 Equations of Lines and Planes

This section focuses on formulating the equations of lines, planes and their intersections.
Vectors are a powerful way of representing such quantities as they are easily extended to
as many dimensions a particular problem may require with little or no adjustment to the
basic formulae. We will be looking at examples in 3D space throughout this section; this
is done for the sake of simplicity in visualising examples and brevity of notation.

4.1 The Equation of a Line

Beginning with the equation of a line we will be interested in three forms all of which are
representations of the same line

• Equation of a line in vector form

• Equation of a line in parametric form

• Equation of a line in symmetric form

4.1.1 Equation of a Line in Vector Form

We seek the equation of a line that passes through the points

p1(x1, y1, z1) and p2(x2, y2, z2)
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Figure 1: The line passing through the
points p1 and p2 with associated position

vectors r1 and r2. The point p is an
arbitrary point on the line with associated

vector r

The associated position vector with the
point p1 is

r1 = x1 i + y1 j + z1 k

the point p2 has an associated position vec-
tor

r2 = x2 i + y2 j + z2 k.

Let the point p(x, y, z) be any point on the
line

r = x i + y j + z k

Given two points p1 and p2 we denote the
vector starting at the point p1 and ending
at the point p2 as

−−→p1p2
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Notice above that the vector −→p1p is parallel to −−→p1p2, reformulating this in terms of the
associated position vectors we have

r− r1 is parallel to r2 − r1

Since these vectors are parallel the can be expressed as scalar multiples of one another;
that is for some scalar t we have

r− r1 = t(r2 − r1)

It is standard practice in textbooks to shorten the notation at this point and introduce
a quantity known as the direction vector, we let

a = r2 − r1 = (x2 − x1) i + (y2 − y1) j + (z2 − z1) k

= 〈(x2 − x1), (y2 − y1), z2 − z1)〉

Using this notation we can write

r− r1 = t(r2 − r1)

= ta

which brings us to our result

Important Formula 4.1 (vector equation of a line).
The vector equation of the line joining the points p1 and p2, which have respective position
vectors r1 and r2 is given by

r = r1 + ta

where a is the direction vector of the line, given by

a = r2 − r1
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4.1.2 Equation of a line in parametric form

Beginning with our result from the previous section and restricting ourselves to vectors
in R3 for brevity of notation we have, the equation of line that passes through the points
p1 and p2 given by,

r = r1 + ta

using the angled bracket notation we have

〈x, y, z〉 = 〈x1, y1, z1〉+ t〈a1, a2, a3〉
= 〈x1 + ta1, y1 + ta2, z1 + ta3〉

comparing the components of the vectors together we have the parametric form of the line

Important Formula 4.2 (parametric form of the line). Given two points on a line p1
and p2 in R3 the parametric form of the line is given by

x = x1 + ta1

y = y1 + ta2

z = z1 + ta3

where a1, a2 and a3 are the components of the direction vector

a1 = x2 − x1, a2 = y2 − y1 and a3 = z2 − z1

4.1.3 Equation of a line in symmetric form

The symmetric form of the line is written by solving for the parameter t in the parametric
form of the line, we have the parametric form

x = x1 + ta1, y = y1 + ta2, z = z1 + ta3

solving each of these for t we have

t =
x− x1

a1
, t =

y − y1
a2

, t =
z − z1
a3

and we have the symmetric form
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Important Formula 4.3 (symmetric form of the line). Given two points on a line p1
and p2 in R3 the symmetric form of the line is given by

x− x1

a1
=

y − y1
a2

=
z − z1
a3

where a1, a2 and a3 are the components of the direction vector

a1 = x2 − x1, a2 = y2 − y1 and a3 = z2 − z1

4.1.4 Worked example

Example 4.1.1.
Find the vector equation, parametric form and symmetric form for the line passing
through the points (2,−1, 8) and (5, 6,−3).

Solution:
Begin by writing down the associated position vectors to both points

r1 = 2 i− j + 8 k, r2 = 5 i + 6 j− 3 k

now the direction vector can be found

a = r2 − r1 = 5 i + 6 j− 3 k− (2 i− j + 8 k)

= 3 i + 7 j− 11 k

= 〈3, 7,−11〉

Using the formula

r = r1 + ta

we have

〈x, y, z〉 = 〈2,−1, 8〉+ t〈3, 7,−11〉
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example continued . . .

and finally have the vector form

〈x, y, z〉 = 〈2 + 3t,−1 + 7t, 8− 11t〉

To obtain the the parametric form (also referred to as the component form) we compare
the components and obtain

The parametric form

x = 2 + 3t

y = −1 + 7t

z = 8− 11t

Finally solving each of these equations for t and equating will yield the symmetric form

t =
x− 2

3
, t =

y + 1

7
t =

z − 8

−11

The symmetric form

x− 2

3
=

y + 1

7
=

8− z

11

6



4.2 The Plane and Intersections

The aim here will be to specify the equation of a plane in vector notation and then examine
the intersection between a plane and a line (resulting in a point) and the intersection of
two planes (resulting in a line1).

4.2.1 The equation of a plane

There are two pieces of information one requires in order to uniquely specify a plane;
these are

1. A point on the plane, denoted here as p0

2. A normal vector to the plane, denoted n

We begin by taking p(x, y, z) to be an arbitrary point on the plane. The vector from the
point p0 to the point p denoted as −→p0p is a vector on the plane,

−→p0p = (x− x0) i + (y − y0) j + (z − z0) k

x

y

z

plane

p0

n

p
p0p

Figure 2: The plane given a normal vector n and point p0, the point p is an arbitrary
point on the plane.

We have that n is normal to the plane and thus it must also be perpendicular to −→p0p, we
can express this relationship in terms of the dot product

1these are true only if we are working in R3, in higher dimensions the intersections between hyperplanes
results in objects that are themselves hypersurfaces spanned by vectors.

7



n · −→p0p = 0

This generates the equation of the plane; taking the normal vector to be

n = n1 i + n2 j + n3 k

we have the equation of the plane given by

Important Formula 4.4 (equation of a plane).

Given a point on the plane p0(x0, y0, z0) and a normal vector to the plane n = n1 i +
n2 j + n3 k the equation of the plane is given by

n1(x− x0) + n2(y − y0) + n3(z − z0) = 0

Equivalently one can write the equation of the plane as

Formula 4.1.

n1x + n2y + n3z = D

where D = n1x0 + n2y0 + n3z0
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4.2.2 Worked example

Example 4.2.1.

Find the equation of the plane which passes through the three points

p1(0, 0, 1), p2(2, 0, 0) and p3(0, 3, 0)

Solution:
In order to write down the equation of the plane we require a unit normal vector to the
plane. Although we are not given this directly we can find a normal vector by taking the
cross product between two vectors that are on the plane.

x

y

z

p1

p2

p3n

p1p2

p1p3

Figure 3: Constructing a normal vector to the plane from three points on the plane.

One can construct the vectors

−−→p1p2 and −−→p1p3

to obtain two vectors that are on the plane. Taking the cross product between these
vectors yields a normal vector

n = −−→p1p2 ×−−→p1p3
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example continued . . .

for this example we have

−−→p1p2 = 2 i + 0 j− 1 k −−→p1p3 = 0 i + 3 j− 1 k

and hence we have a normal vector

n =

∣∣∣∣∣∣
i j k
2 0 −1
0 3 −1

∣∣∣∣∣∣ = i

∣∣∣∣0 −1
3 −1

∣∣∣∣− j

∣∣∣∣2 −1
0 −1

∣∣∣∣ + k

∣∣∣∣2 0
0 3

∣∣∣∣
=

(
(0)(−1)− (−1)(3)

)
i−

(
(2)(−1)− (−1)(0)

)
j +

(
(2)(3)− (0)(0)

)
k

= 3 i + 2 j + 6 k.

Now let p(x, y, z) be an arbitrary point on the plane; we seek a vector from a point on
the plane to this arbitrary point, the vector −→p1p will do

−→p1p = (x− 0) i + (y − 0) j + (z − 1) k = x i + y j + (z − 1) k

Now the plane must satisfy the condition

n · −→p1p = 0 ⇒ (3 i + 2 j + 6 k) · (x i + y j + (z − 1) k) = 0

finally we have the equation of the plane

3x + 2y + 6(z − 1) = 0

which can be written as

3x + 2y + 6z = 6
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4.2.3 Worked Example: Intersection between a line and a plane.

Example 4.2.2.
Find the point where the line

x =
8

3
+ 2t, y = −2t, z = 1 + t

intersects the plane

3x + 2y + 6z = 6

Solution:

x

y

z
line

plane

intersection

Figure 4: Intersection between a line and a plane in R3.

At the intersection point both the equation of the line and the equation of the plane must
be simultaneously satisfied.
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example continued . . .

Hence we can substituted the parametric equations of the line into our equation for the
plane

3

(
8

3
+ 2t

)
+ 2 (−2t) + 6 (1 + t) = 6

8 + 6t− 4t + �6 + 6t = �6

⇒ 8t = −8

we have found that at the intersection point we must have

t = −1.

From the parametric form of the line we can find this point

x =
8

3
+ 2(−1) =

2

3

y = −2(−1) = 2

z = 1 + (−1) = 0

and we have found that the intersection point occurs at

(
2

3
, 2, 0

)
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4.2.4 Worked Example: Intersection between two planes.

Example 4.2.3.

Find the line of intersection between the two planes

2x− 3y + 4z = 1

x− y − z = 5

Solution:

x

y

z

plane 1

plane 2

intersection
line

Figure 5: Intersection of two planes in R3.

Notice that we have two equations (the planes) and three unknowns (x, y and z). This
means there will not be one unique point that will satisfy the equations but rather a
collection of points (the line) that will satisfy the system. We begin by letting

z = t

and proceed to solve the given equations for x and y. This will result in a parametric
equation for the intersection line.
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example continued . . .

The equations of our intersecting planes

2x− 3y + 4z = 1

x− y − z = 5

become

2x− 3y = 1− 4t

x− y = 5 + t

when we let z = t. This is a set of two simultaneous equations in two unknowns which
we can solve.

2x− 3y = 1− 4t

3x− 3y = 15 + 3t

Subtracting the first equation from the second yields

x = 14 + 7t.

We can now find y by substituting this value of x into

x− y = 5 + t

⇒ 14 + 7t− y = 5 + t

and we have

y = 9 + 6t.

Finally we can write the parametric equations of the line of intersection between the two
planes

x = 14 + 7t, y = 9 + 6t and z = t
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